(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
not(true) → false
not(false) → true
odd(0) → false
odd(s(x)) → not(odd(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
not(true) → false
not(false) → true
odd(0) → false
odd(s(z0)) → not(odd(z0))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
+(s(z0), z1) → s(+(z0, z1))
Tuples:
ODD(s(z0)) → c3(NOT(odd(z0)), ODD(z0))
+'(z0, s(z1)) → c5(+'(z0, z1))
+'(s(z0), z1) → c6(+'(z0, z1))
S tuples:
ODD(s(z0)) → c3(NOT(odd(z0)), ODD(z0))
+'(z0, s(z1)) → c5(+'(z0, z1))
+'(s(z0), z1) → c6(+'(z0, z1))
K tuples:none
Defined Rule Symbols:
not, odd, +
Defined Pair Symbols:
ODD, +'
Compound Symbols:
c3, c5, c6
(3) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
not(true) → false
not(false) → true
odd(0) → false
odd(s(z0)) → not(odd(z0))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
+(s(z0), z1) → s(+(z0, z1))
Tuples:
+'(z0, s(z1)) → c5(+'(z0, z1))
+'(s(z0), z1) → c6(+'(z0, z1))
ODD(s(z0)) → c3(ODD(z0))
S tuples:
+'(z0, s(z1)) → c5(+'(z0, z1))
+'(s(z0), z1) → c6(+'(z0, z1))
ODD(s(z0)) → c3(ODD(z0))
K tuples:none
Defined Rule Symbols:
not, odd, +
Defined Pair Symbols:
+', ODD
Compound Symbols:
c5, c6, c3
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
+'(z0, s(z1)) → c5(+'(z0, z1))
ODD(s(z0)) → c3(ODD(z0))
We considered the (Usable) Rules:none
And the Tuples:
+'(z0, s(z1)) → c5(+'(z0, z1))
+'(s(z0), z1) → c6(+'(z0, z1))
ODD(s(z0)) → c3(ODD(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+'(x1, x2)) = [5]x1 + [4]x2
POL(ODD(x1)) = [4]x1
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(s(x1)) = [4] + x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
not(true) → false
not(false) → true
odd(0) → false
odd(s(z0)) → not(odd(z0))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
+(s(z0), z1) → s(+(z0, z1))
Tuples:
+'(z0, s(z1)) → c5(+'(z0, z1))
+'(s(z0), z1) → c6(+'(z0, z1))
ODD(s(z0)) → c3(ODD(z0))
S tuples:
+'(s(z0), z1) → c6(+'(z0, z1))
K tuples:
+'(z0, s(z1)) → c5(+'(z0, z1))
ODD(s(z0)) → c3(ODD(z0))
Defined Rule Symbols:
not, odd, +
Defined Pair Symbols:
+', ODD
Compound Symbols:
c5, c6, c3
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
+'(s(z0), z1) → c6(+'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
+'(z0, s(z1)) → c5(+'(z0, z1))
+'(s(z0), z1) → c6(+'(z0, z1))
ODD(s(z0)) → c3(ODD(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+'(x1, x2)) = x2 + [2]x1·x2 + x12
POL(ODD(x1)) = [2]x1 + x12
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(s(x1)) = [1] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
not(true) → false
not(false) → true
odd(0) → false
odd(s(z0)) → not(odd(z0))
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
+(s(z0), z1) → s(+(z0, z1))
Tuples:
+'(z0, s(z1)) → c5(+'(z0, z1))
+'(s(z0), z1) → c6(+'(z0, z1))
ODD(s(z0)) → c3(ODD(z0))
S tuples:none
K tuples:
+'(z0, s(z1)) → c5(+'(z0, z1))
ODD(s(z0)) → c3(ODD(z0))
+'(s(z0), z1) → c6(+'(z0, z1))
Defined Rule Symbols:
not, odd, +
Defined Pair Symbols:
+', ODD
Compound Symbols:
c5, c6, c3
(9) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))